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Setting

• We observe a park of complex systems

• We focus on a special component of this system

• This particular component appears several times in each system

? In the same conditions

? The number of observations is not so bad

• The park is submitted to a maintenance

? Periodic inspections are operated (c is the period)

• Our component can be in three states

? Sane (S): It works perfectly (revealed by an inspection)

? Damaged (D): It needs to be repaired (revealed by an inspection)

? Down (F): Out of order (revealed when the failure occurs)
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Transition Times

• We model the transit times between the states as follows :

? Y s is the time spent in the state (S) : Y s ∼ E(µ)

? Y d is the time spent in the state (D) : Y d ∼ E(λ)

Figure: Transition Times

We want to estimate the unknown transition rates µ and λ
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The inspections

• Let Ci the time between the inspections #i − 1 and #i (Ci = c for the
moment)

? Di = C1 + . . . + Ci the date of the inspection #i

• During an inspection

? if the component is safe, nothing is done

? if it is damaged, the component is immediately repaired and
returns to the state (S)

• If a failure occurs, the component is also repaired and returns to the
state (S)
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Two kinds of repairs

• An inspection reveals that the component is damaged

• A failure occurs
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Notations

• We denote

DK r = date of the planed inspection following the damaged state
K r = the corresponding index

= number of inspections between two repairs

= inf {n ≥ 1 : Dn ≥ Y s} = 1 +
∑
n≥1

1Dn<Y s

N r
t = the number of repairs up to time t

N f
t = the number of failures up to time t

N i
t = the number of inspections up to time t

? In case of periodic inspections

K r = dY s/ce , DK r = c dY s/ce
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Focus on a single element
After a repair, the component is considered as new
N r is a renewal process with inter-repair time X r with

X r = min(DK r ,Y s + Y d )

? X r = DK r : the repairs is due to a planed visit with damaged state

? X r = Y s + Y d : a failure occurs
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The data

• The data contains

? The ID of the component

? The inspection dates and the state of the component

? The failure dates

ID Date of the event State
1 01/01/1995 Inspection: OK
1 01/06/1995 Inspection: OK
1 01/11/1995 Inspection: repair
1 01/01/1996 Inspection: repair
2 01/01/1995 Inspection: OK
2 15/04/1995 Failure: repair
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The main point of the method

• For each component (e.g. #1), the number of repairs, N r , is a renewal
process

Main arguments of the approach

• We have several independent components observed on rather short
times

• We aggregate data and consider the result as a single realization
observed on a long time

• We can use the asymptotic behavior of renewal processes

? Law of large numbers

? Central limit theorem
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Basic observations
• N r is a renewal process with inter-arrival time

X r = min(DK r ,Y s + Y d )

• N f is also a renewal process with inter-arrival time

X f (d)
=

τ∑
j=1

X r
j , τ = inf{n ≥ 1 : DK r

n
≥ Y s

n + Y d
n }

? τ is a geometric time with parameter Pd = P
(
DK r ≥ Y s + Y d

)
• N i is almost a renewal process with rewards

? Between two repairs, the number of inspections is K r

N i
t =

N r
t∑

j=1

K r
j + Rt , Rt = #inspections between the last repair and t
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Asymptotic behavior

Law of Large Numbers

lim
t→∞

N i
t

t
=
E [K r ]
E [X r ]

depends only on µ ,

lim
t→∞

N f
t

t
=
P
(
DK r ≥ Y s + Y d

)
E [X r ]

, lim
t→∞

N r
t

t
=

1
E [X r ]

• When Y s ∼ E(µ) and Y d ∼ E(λ)

E
[
X r ] =

1
µ

+
1
λ
P
(
DK r ≥ Y s + Y d) E

[
K r ] =

1
1− e−µc ,

P
(
DK r ≥ Y s + Y d) = 1− µ

µ− λ
e−λc − e−µc

1− e−µc
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Very simple estimators
• Combining these limits (in particular)

lim
t→∞

N i
t

N r
t

= E
[
K r ] , lim

t→∞

N f
t

N r
t

= P
(
DK r ≥ Y s + Y d)

• We get very simple estimators

µ = lim
t→+∞

−1
c

log
(

1− N r
t

N i
t

)
= lim

t→+∞
µ̂t ,

λ = lim
t→+∞

−N f
t log

(
1− N r

t
N i

t

)
−t log

(
1− N r

t
N i

t

)
− cN r

t

= lim
t→+∞

λ̂t

? In particular, if N r
t << N i

t ,

µ̂t =
N r

t

cN i
t
, µ̂t =

N f
t

t − cN i
t
.
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Central Limit Theorem

• With the help of Rényi’s theorem, we can prove the following result

Theorem

√
t

(
N i

t

t
− E [K r ]

E [X r ]
,

N f
t

t
−

P
(
DK r ≥ Y s + Y d

)
E [X r ]

,
N r

t

t
− 1

E [X r ]

)
(d)−→ N (0,Q)

where Q is explicit.

Corollary (Asymptotic Normality)

√
t
(
µ̂t − µ, λ̂t − λ

)
(d)−→ N (0,R)

• This gives confidence intervals
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Simulated data
• µ = 10−3, λ = 5.10−4, c = 1000, t = 50001908

? N r
t = 33501, N f

t 8255, N i
t 53116
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Simulated data

• µ = 10−3, λ = 5.10−4, c = 1000, t = 50001908

? N r
t = 33501, N f

t = 8255, N i
t = 53116

Method µ and CI (×10−4) λ and CI (×10−4)
ML 9.96215 (0.056) 5.04164 (0.056)
AM 9.96184 (0.054) 5.04197 (0.053)

• Computational times

? ML = 62 s.

? AM = 10−4 s.
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Real data

• N r
t = 51, N f

t = 5, N i
t = 157

Mthod µ̂ λ̂ log V
ML 9.44 10−6 2.21 10−6 -146.59
MA 9.60 10−6 4.41 10−6 NA
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Random inspections

• We can add some randomness on the inspection dates

? Ci i.i.d. with a known law: L(C)

• Roughly speaking, it changes e−µc by L(µ) where

L(s) = E
[
e−sC

]

E
[
X r ] =

1
µ

+
1
λ
P
(
DK r ≥ Y s + Y d) ,

E
[
K r ] =

1
1− L(µ)

,

P
(
DK r ≥ Y s + Y d) = 1− µ

µ− λ
L(λ)− L(µ)

1− L(µ)
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Extensions

• Closed formulae for Y s ∼ γ(n, µ), n ∈ N.

• For n = 2, we have

E
[
K r ] =

1− L(µ)− µL′(µ)

(1− L(µ))2 ,

1− Pd =
µ2

(µ− λ)2

(
L(λ)− L(µ)

1− L(µ)
+ (µ− λ)L′(µ)

1− L(λ)
(1− L(µ))2

)
.

• Four states model

• External factors e.g. weather
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What can we hope from this method?

• We have 3 equations

lim
t→∞

N i
t

t
=
E [K r ]
E [X r ]

lim
t→∞

N f
t

t
=
P
(
DK r ≥ Y s + Y d

)
E [X r ]

,

lim
t→∞

N r
t

t
=

1
E [X r ]

• We can estimate 3 three parameters

? An exponential law for Y d seems reasonable E(λ)

? This method should work for the law of Y s depending on two
parameters

? e.g. Y s ∼ W(β, η) which seems to be very popular
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Weibull case or another law

• In the exponential case, we have simple closed formula

• The first idea was to do a lot of computations to get formulae

? semi-analytical formulae

? expressed with the help of series, integrals

• Drawbacks

? Not really explicit in the end

? You have to do all the computations each time you consider
another law
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Monte-Carlo approach

• We are trying to couple the renewal estimation with Monte-Carlo
simulations

• The renewal approach in two equations

lim
t→+∞

t−1
(

N i
t ,N

f
t ,N

r
t

)
= F (parameters),

̂parameters = F−1
(

t−1
(

N i
t ,N

f
t ,N

r
t

))
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Monte-Carlo approach

• In the exponential case, the function F is explicit

For the general case
Compute F using Monte-Carlo simulations

• Method in development

• Reduction of the computational cost
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Weibull case

• Y s ∼ W(β, η), Y d = E(λ), C ∼ N (c, σ2)

• β = 1.5, η = 500, λ = 510−4

? c = 1000, σ2 = 10

• Three methods (100 times)

? A grid method: 6879 s.

? Optim 1: 52.47 s.

? Optim 2: 264 s.
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Weibull case

Figure: η
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Weibull case

Figure: β
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Weibull case

Figure: λ



Framework The renewal approach Generalizations and Perspectives

Monte-Carlo approach

• Still numerical tests to do

• Seems to work so far
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