Estimation of the degradation rates of a system with preventive maintenance Renewal theory approach

Ph. Briand, P.-É. Chaudru de Raynal, E. Idée, C. Labart LAMA UMR 5127, CNRS and Savoie Mont-Blanc University, France

W. Lair, E. Remy

MRI, EDF R&D, France

Wokshop ANR AMMSI, UTT, January 29 2015

Framework

The renewal approach

Generalizations and Perspectives

Framework

The renewal approach

Generalizations and Perspectives

Setting

- We observe a park of complex systems
- We focus on a special component of this system
- This particular component appears several times in each system
 - ⋆ In the same conditions
 - ⋆ The number of observations is not so bad
- The park is submitted to a maintenance
 - * Periodic inspections are operated (*c* is the period)
- Our component can be in three states
 - * Sane (S): It works perfectly (revealed by an inspection)
 - * Damaged (D): It needs to be repaired (revealed by an inspection)
 - * Down (F): Out of order (revealed when the failure occurs)

Transition Times

- We model the transit times between the states as follows :
 - * Y^s is the time spent in the state (S) : $Y^s \sim \mathcal{E}(\mu)$
 - * Y^d is the time spent in the state (D) : $Y^d \sim \mathcal{E}(\lambda)$

Figure: Transition Times

We want to estimate the unknown transition rates μ and λ

The inspections

- Let C_i the time between the inspections #i 1 and #i ($C_i = c$ for the moment)
 - * $D_i = C_1 + \ldots + C_i$ the date of the inspection #*i*
- During an inspection
 - ⋆ if the component is safe, nothing is done

 $\star\,$ if it is damaged, the component is immediately repaired and returns to the state (S)

• If a failure occurs, the component is also repaired and returns to the state (S)

Two kinds of repairs

• An inspection reveals that the component is damaged

• A failure occurs

Notations

- We denote
 - $D_{K'}$ = date of the planed inspection following the damaged state
 - K^r = the corresponding index
 - = number of inspections between two repairs

$$= \inf \{ n \ge 1 : D_n \ge Y^s \} = 1 + \sum_{n \ge 1} \mathbf{1}_{D_n < Y^s}$$

- N_t^r = the number of repairs up to time t
- N_t^f = the number of failures up to time *t*
- N_t^i = the number of inspections up to time t
- * In case of periodic inspections

$$K^r = \left\lceil Y^s/c \right\rceil, \qquad D_{K^r} = c \left\lceil Y^s/c \right\rceil$$

Focus on a single element

After a repair, the component is considered as new

 N^r is a renewal process with inter-repair time X^r with

$$X^r = \min(D_{K^r}, Y^s + Y^d)$$

* $X^r = D_{K^r}$: the repairs is due to a planed visit with damaged state

Framework

The renewal approach

Generalizations and Perspectives

The data

- The data contains
 - ★ The ID of the component
 - $\star\,$ The inspection dates and the state of the component
 - ★ The failure dates

ID	Date of the event	State	
1	01/01/1995	Inspection: OK	
1	01/06/1995	Inspection: OK	
1	01/11/1995	Inspection: repair	
1	01/01/1996	Inspection: repair	
2	01/01/1995	Inspection: OK	
2	15/04/1995	Failure: repair	

The main point of the method

• For each component (e.g. #1), the number of repairs, N^r , is a renewal process

Main arguments of the approach

• We have several independent components observed on rather short times

• We aggregate data and consider the result as a single realization observed on a long time

- We can use the asymptotic behavior of renewal processes
 - * Law of large numbers
 - * Central limit theorem

Basic observations

• N^r is a renewal process with inter-arrival time

 $X^r = \min(D_{K^r}, Y^s + Y^d)$

• N^f is also a renewal process with inter-arrival time

$$X^{r} \stackrel{(d)}{=} \sum_{j=1}^{\tau} X^{r}_{j}, \qquad \tau = \inf\{n \ge 1 : D_{K^{r}_{n}} \ge Y^{s}_{n} + Y^{d}_{n}\}$$

* τ is a geometric time with parameter $P_d = \mathbb{P}(D_{K^r} \geq Y^s + Y^d)$

- *Nⁱ* is almost a renewal process with rewards
 - \star Between two repairs, the number of inspections is K^r

$$N_t^i = \sum_{j=1}^{N_t^r} K_j^r + R_t, \quad R_t = #$$
inspections between the last repair and t

Asymptotic behavior

Law of Large Numbers

• When $Y^{s} \sim \mathcal{E}(\mu)$ and $Y^{d} \sim \mathcal{E}(\lambda)$

$$\mathbb{E}\left[X^{r}\right] = \frac{1}{\mu} + \frac{1}{\lambda} \mathbb{P}\left(D_{K^{r}} \geq Y^{s} + Y^{d}\right) \quad \mathbb{E}\left[K^{r}\right] = \frac{1}{1 - e^{-\mu c}},$$
$$\mathbb{P}\left(D_{K^{r}} \geq Y^{s} + Y^{d}\right) = 1 - \frac{\mu}{\mu - \lambda} \frac{e^{-\lambda c} - e^{-\mu c}}{1 - e^{-\mu c}}$$

Very simple estimators

• Combining these limits (in particular)

$$\lim_{t\to\infty}\frac{N_t^i}{N_t^r} = \mathbb{E}\left[K^r\right], \quad \lim_{t\to\infty}\frac{N_t^f}{N_t^r} = \mathbb{P}\left(D_{K^r} \geq Y^s + Y^d\right)$$

• We get very simple estimators

$$\mu = \lim_{t \to +\infty} -\frac{1}{c} \log \left(1 - \frac{N_t^r}{N_t^i} \right) = \lim_{t \to +\infty} \widehat{\mu}_t,$$
$$\lambda = \lim_{t \to +\infty} \frac{-N_t^r \log \left(1 - \frac{N_t^r}{N_t^i} \right)}{-t \log \left(1 - \frac{N_t^r}{N_t^i} \right) - cN_t^r} = \lim_{t \to +\infty} \widehat{\lambda}_t$$

* In particular, if $N_t^r \ll N_t^i$,

$$\widehat{\mu}_t = \frac{N_t^r}{cN_t^i}, \qquad \widehat{\mu}_t = \frac{N_t^f}{t - cN_t^i}.$$

Central Limit Theorem

 With the help of Rényi's theorem, we can prove the following result Theorem

$$\sqrt{t}\left(\frac{N_t^i}{t} - \frac{\mathbb{E}[K^r]}{\mathbb{E}[X^r]}, \frac{N_t^f}{t} - \frac{\mathbb{P}\left(D_{K^r} \ge Y^s + Y^d\right)}{\mathbb{E}[X^r]}, \frac{N_t^r}{t} - \frac{1}{\mathbb{E}[X^r]}\right) \xrightarrow{(d)} \mathcal{N}(0, Q)$$

where Q is explicit.

Corollary (Asymptotic Normality)

$$\sqrt{t} \left(\widehat{\mu}_t - \mu, \widehat{\lambda}_t - \lambda \right) \xrightarrow{(d)} \mathcal{N}(\mathbf{0}, \mathbf{R})$$

• This gives confidence intervals

• $\mu = 10^{-3}$, $\lambda = 5.10^{-4}$, c = 1000, t = 50001908

* $N_t^r = 33501, N_t^f 8255, N_t^i 53116$

convergence of mu

• $\mu = 10^{-3}$, $\lambda = 5.10^{-4}$, c = 1000, t = 50001908

* $N_t^r = 33501, N_t^f = 8255, N_t^i = 53116$

convergence of lambda

• $\mu = 10^{-3}$, $\lambda = 5.10^{-4}$, c = 1000, t = 50001908

* $N_t^r = 33501, N_t^f = 8255, N_t^i = 53116$

convergence of lambda

•
$$\mu = 10^{-3}$$
, $\lambda = 5.10^{-4}$, $c = 1000$, $t = 50001908$

*
$$N_t^r = 33501, N_t^f = 8255, N_t^i = 53116$$

Method	μ and CI (×10 ⁻⁴)	λ and CI ($ imes$ 10 ⁻⁴)
ML	9.96215 (0.056)	5.04164 (0.056)
AM	9.96184 (0.054)	5.04197 (0.053)

- · Computational times
 - ★ ML = 62 s.
 - \star AM = 10⁻⁴ s.

Real data

•
$$N_t^r = 51, N_t^f = 5, N_t^i = 157$$

Mthod	$\widehat{\mu}$	$\widehat{\lambda}$	log V
ML	9.44 10 ⁻⁶	2.21 10 ⁻⁶	-146.59
MA	9.60 10 ⁻⁶	4.41 10 ⁻⁶	NA

Framework

The renewal approach

Generalizations and Perspectives

Random inspections

· We can add some randomness on the inspection dates

* C_i i.i.d. with a known law: $\mathcal{L}(C)$

• Roughly speaking, it changes $e^{-\mu c}$ by $L(\mu)$ where

$$L(s) = \mathbb{E}\left[e^{-sC}\right]$$

$$\mathbb{E} \left[X^r \right] = \frac{1}{\mu} + \frac{1}{\lambda} \mathbb{P} \left(D_{K^r} \ge Y^s + Y^d \right),$$
$$\mathbb{E} \left[K^r \right] = \frac{1}{1 - L(\mu)},$$
$$\mathbb{P} \left(D_{K^r} \ge Y^s + Y^d \right) = 1 - \frac{\mu}{\mu - \lambda} \frac{L(\lambda) - L(\mu)}{1 - L(\mu)}$$

Extensions

- Closed formulae for $Y^{s} \sim \gamma(n, \mu), n \in \mathbf{N}$.
- For *n* = 2, we have

$$\begin{split} \mathbb{E}\left[K^{r}\right] &= \frac{1 - L(\mu) - \mu L'(\mu)}{\left(1 - L(\mu)\right)^{2}}, \\ 1 - P_{d} &= \frac{\mu^{2}}{(\mu - \lambda)^{2}} \left(\frac{L(\lambda) - L(\mu)}{1 - L(\mu)} + (\mu - \lambda)L'(\mu)\frac{1 - L(\lambda)}{(1 - L(\mu))^{2}}\right). \end{split}$$

- Four states model
- External factors e.g. weather

What can we hope from this method?

• We have **3** equations

$$\begin{split} \lim_{t \to \infty} \frac{N_t^i}{t} &= \frac{\mathbb{E}[K^r]}{\mathbb{E}[X^r]} \\ \lim_{t \to \infty} \frac{N_t^f}{t} &= \frac{\mathbb{P}\left(D_{K^r} \geq Y^s + Y^d\right)}{\mathbb{E}[X^r]}, \\ \lim_{t \to \infty} \frac{N_t^r}{t} &= \frac{1}{\mathbb{E}[X^r]} \end{split}$$

• We can estimate 3 three parameters

* An exponential law for Y^d seems reasonable $\mathcal{E}(\lambda)$

 $\star\,$ This method should work for the law of Y^s depending on two parameters

 \star e.g. $Y^{s} \sim \mathcal{W}(\beta, \eta)$ which seems to be very popular

Weibull case or another law

- In the exponential case, we have simple closed formula
- The first idea was to do a lot of computations to get formulae
 - * semi-analytical formulae
 - \star expressed with the help of series, integrals
- Drawbacks
 - * Not really explicit in the end

 $\star\,$ You have to do all the computations each time you consider another law

Monte-Carlo approach

- We are trying to couple the renewal estimation with Monte-Carlo simulations
- The renewal approach in two equations

$$\lim_{t \to +\infty} t^{-1} \left(N_t^i, N_t^f, N_t^r \right) = F(\text{parameters}),$$

$$\widehat{parameters} = F^{-1} \left(t^{-1} \left(N_t^i, N_t^f, N_t^r \right) \right)$$

Monte-Carlo approach

• In the exponential case, the function F is explicit

For the general case

Compute F using Monte-Carlo simulations

- Method in development
- · Reduction of the computational cost

•
$$Y^{s} \sim \mathcal{W}(\beta, \eta), Y^{d} = \mathcal{E}(\lambda), C \sim \mathcal{N}(c, \sigma^{2})$$

•
$$\beta = 1.5, \eta = 500, \lambda = 510^{-4}$$

*
$$c = 1000, \sigma^2 = 10$$

- Three methods (100 times)
 - * A grid method: 6879 s.
 - * Optim 1: 52.47 s.
 - * Optim 2: 264 s.

Figure: η

Figure: β

Figure: λ

Framework

"he renewal approach

Generalizations and Perspectives

Monte-Carlo approach

- Still numerical tests to do
- Seems to work so far

Thank you for your attention